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Abstract

In this paper, we consider the issue of convergence toward entropy solutions for high

order finite volume weighted essentially non-oscillatory (WENO) scheme and discontinuous

Galerkin (DG) finite element method approximating scalar nonconvex conservation laws. Al-

though such high order nonlinearly stable schemes can usually converge to entropy solutions

of convex conservation laws, convergence may fail for certain nonconvex conservation laws.

We perform a detailed study to demonstrate such convergence issues for a few representative

examples, and suggest a modification of the high order schemes based either on first order

monotone schemes or a second order entropic projection [1] to achieve convergence toward

entropy solutions while maintaining high order accuracy in smooth regions.
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1 Introduction

In this paper, we consider the Cauchy problem of one dimensional scalar conservation laws:

{
ut + f(u)x = 0, in R × [0, T ],
u(x, 0) = u0(x), in R.

(1.1)

The unique entropy solution of (1.1) satisfies

U(u)t + F (u)x ≤ 0 (1.2)

in the distribution sense, for any convex entropy function U(u) and its corresponding entropy

flux function F (u) satisfying F ′(u) = U ′(u)f ′(u).

If (1.1) is a convex (or concave) conservation law, that is, if f ′′(u) does not change sign,

we would only need the entropy condition (1.2) to be satisfied for one strictly convex entropy

in order to determine the unique entropy solution of (1.1). When (1.1) is non-convex, namely

when f ′′(u) changes sign, the solution structure of (1.1) is much more complicated. This can

already be seen from the simple Riemann problem with the initial condition

u0(x) =

{
ul, for x < 0,
ur, for x ≥ 0.

(1.3)

The discontinuity at the origin generates a single shock or a rarefaction wave for a convex

conservation law, while for nonconvex conservation laws, much more complicated solution

structures, sometimes called a compound wave, might be generated. The compound wave

involves a sequence of shocks and rarefaction waves and is much harder to be resolved

numerically. The entropy solution of the nonconvex Riemann problem can be determined

from a convex-hull construction [8].

Numerical methods for nonlinear hyperbolic equations are expected to be able to ef-

ficiently capture the unique entropy solution. It is well known that first order monotone

schemes converge to entropy solutions of both convex and nonconvex conservation laws [3],

but with a relatively slow convergence rate. For high order numerical methods, for example

the high order finite difference or finite volume WENO schemes [9, 6, 13] and discontinuous
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Galerkin method [2], however, very few theoretical results on convergence are available for

discontinuous solutions.

The high order finite volume WENO scheme, about which we provide a brief review in

section 2.1, is one of the successful high order numerical methods in approximating (1.1).

Based on the idea of adaptive stencils in the reconstruction procedure, WENO schemes would

automatically achieve high order accuracy in smooth regions of the solution and an essentially

non-oscillatory resolution at the discontinuities. Despite its good numerical performance in

many applications, the theoretical proof for its convergence towards the entropy solution

is very difficult. Typically, one would need a cell entropy inequality [10], or a wavewise

entropy inequality [17], together with the total variation bounded (TVB) property of the

numerical solutions to imply such convergence. There are counter examples for nonconvex

conservation laws [18], such that high order Godunov schemes would not be able to converge

to the entropy solution under the usual time step governed by the CFL condition. For the

Godunov schemes under large time steps, convergence is available with up to third order

reconstruction operators [11]. Though this convergence result holds for both convex and

nonconvex conservation laws in multiple space dimensions, the implementation of the scheme

for nonconvex conservation laws and for multiple space dimensions is highly non-trivial.

The discontinuous Galerkin (DG) method is another class of high order numerical meth-

ods in approximating (1.1), about which we provide a brief review in section 2.2. It is a finite

element method, but uses discontinuous, typically piecewise polynomial functions to form

the solution and test spaces, and adopts finite volume techniques including numerical fluxes

and limiters. It can be proved that the semi-discrete DG method satisfies a cell entropy in-

equality for the square entropy [5], which implies convergence to the unique entropy solution

for one dimensional scalar convex conservation laws if it converges. For nonconvex conserva-

tion laws, an entropy inequality for a single entropy is not enough to imply convergence to

the entropy solution. Examples for which numerical solutions of the DG method fail to con-

verge to the correct entropy solution for nonconvex conservation laws will be demonstrated
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in section 3.

In this paper, we propose a first order monotone modification in the framework of high

order finite volume WENO scheme and the discontinuous Galerkin method to enforce con-

vergence towards the entropy solution. A discontinuity indicator is introduced to avoid the

degeneracy of high order accuracy in smooth regions. Based on the idea of a MUSCL type

scheme satisfying all the entropy inequalities in [1], a second order modification with an

entropic projection is also proposed for high order numerical schemes.

This paper is organized as follows. Section 2 gives a brief review on high order finite vol-

ume WENO and discontinuous Galerkin methods. Section 3 demonstrates the performance

of different numerical methods for nonconvex conservation laws through several examples.

A first order monotone modification, as well as a second order modification with an entropic

projection are proposed for high order numerical methods in section 4 and section 5 re-

spectively. Numerical examples are shown to demonstrate the quality of proposed schemes.

Concluding remarks are given in section 6.

2 High order numerical methods

In this section, we briefly review two classes of high order numerical schemes, i.e. the high

order finite volume WENO scheme and the discontinuous Galerkin method in approximating

(1.1). This forms the basis for our discussion in later sections on high order numerical

methods. Throughout the paper, we will always use the following notation for the meshes

unless otherwise specified. The computational interval is divided into N subintervals, each of

which is denoted as a cell Ij = [xj− 1
2
, xj+ 1

2
] with the cell center xj = 1

2
(xj− 1

2
+ xj+ 1

2
) and the

cell length Δxj = (xj+ 1
2
− xj− 1

2
). We also denote the maximum cell size as Δx = maxj Δxj .
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2.1 The finite volume WENO scheme

One of the successful high order numerical methods for (1.1) is the class of finite volume

WENO method [9, 6, 13]. It approximates the integral version of (1.1) by

dūj

dt
= − 1

Δxj

(f̂j+ 1
2
− f̂j− 1

2
), j = 1, ..., N (2.1)

where ūj is the approximation to the cell average of the solution over the cell Ij

ūj =
1

Δxj

∫
Ij

u(x, t)dx,

and

f̂j+ 1
2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

) (2.2)

is a monotone numerical flux (non-decreasing in the first argument and non-increasing in

the second argument) at the cell boundary xj+ 1
2
. Examples of monotone fluxes include the

Godunov flux,

f̂G(a, b) =

⎧⎨
⎩

min
ξ∈[a,b]

f(ξ), if a < b,

max
ξ∈[b,a]

f(ξ), if b ≤ a,
(2.3)

which is the least dissipative among all monotone fluxes, and the Lax-Friedrichs flux,

f̂LF (a, b) =
1

2
(f(a) + f(b) − α(b − a)), α = max

u
|f ′(u)|. (2.4)

In (2.2), u−
j+ 1

2

and u+
j+ 1

2

are the reconstructed values of the solution from neighboring cell av-

erages to the left and right of the cell interface xj+ 1
2
. Examples of high order reconstructions

include second order MUSCL reconstruction and fifth order WENO reconstruction.

• Second order MUSCL reconstruction [15].

The reconstructed point values for the second order MUSCL scheme are obtained by

u−
j+ 1

2

= ūj +
1

2
sj, u+

j+ 1
2

= ūj+1 − 1

2
sj+1, (2.5)

where sj = m(ūj+1 − ūj, ūj − ūj−1) with the usual definition of the minmod function

m [4]

m(a, b) =
1

2
(sign(a) + sign(b)) min(|a|, |b|).
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• Fifth order WENO reconstruction [6, 13].

The reconstructed point value for the fifth order WENO scheme is obtained by

u−
j+1/2 = ω1u

(1)
j+1/2 + ω2u

(2)
j+1/2 + ω3u

(3)
j+1/2, (2.6)

where u
(m)
j+1/2 are the three third order reconstructions on three different stencils given

by

u
(1)
j+1/2 =

1

3
ūj−2 − 7

6
ūj−1 +

11

6
ūj ,

u
(2)
j+1/2 = −1

6
ūj−1 +

5

6
ūj +

1

3
ūj+1,

u
(3)
j+1/2 =

1

3
ūj +

5

6
ūj+1 − 1

6
ūj+2,

and the nonlinear weights ωm are given by

ωm =
ω̃m∑3
l=1 ω̃l

, ω̃l =
γl

(ε + βl)2
,

with the linear weights γl given by

γ1 =
1

10
, γ2 =

3

5
, γ3 =

3

10
,

and the smoothness indicators βl given by

β1 =
13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2

β2 =
13

12
(ūj−1 − 2ūj + ūj+1)

2 +
1

4
(ūj−1 − ūj+1)

2

β3 =
13

12
(ūj − 2ūj+1 + ūj+2)

2 +
1

4
(3ūj − 4ūj+1 + ūj+2)

2 .

Here ε is a parameter to avoid the denominator to become 0 and is taken as 10−6.

The reconstructed point value u+
j+1/2 is obtained in a mirror symmetric fashion with

respect to xj+1/2 as that for u−
j+1/2. For more details on the reconstruction procedure,

we refer to [6, 13].

The high order Godunov type scheme (see, e.g. [18, 11] for the definition of this scheme

that we are using) is a fully discretized version of the finite volume scheme (2.1). It consists

of the following three stages to evolve the cell averages from ūn at n-th time level to ūn+1:
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1. Reconstruction: obtain a high order piecewise polynomial reconstruction un(x) whose

cell averages agree with the given cell averages ūn. We denote this reconstruction

operator as Re(ūn). Second order MUSCL and fifth order WENO reconstructions as

described above are typical examples of this reconstruction operator.

2. Evolution: evolve un(x) by the conservation law (1.1) exactly for a time step Δt, to

obtain a solution ũn+1(x) which is in general not piecewise polynomial anymore. We

denote this evolution operator as SΔt(u
n).

3. Averaging: average the function ũn+1(x) to obtain the cell averages ūn+1 at time level

n + 1. We denote this averaging operator as A(ũn+1).

The Godunov type scheme, using the notations introduced above, can be described ab-

stractly as {
ū0 = A(u0)
ūn+1 = A ◦ SΔt ◦ Re (ūn), n = 0, 1, · · · (2.7)

We remark that the exact evolution step is difficult to implement, however we do not

need all the information of this exactly evolved solution ũn+1(x), but only its cell averages.

Therefore, it is usually possible to implement such Godunov type schemes in an efficient

fashion. We refer to [11] for more details.

2.2 The discontinuous Galerkin method

Another class of successful high order numerical methods for (1.1) is the discontinuous

Galerkin method. The discontinuous Galerkin method is a finite element method using

discontinuous piecewise polynomial functions

V k
Δx = {p : p|Ij

∈ P k(Ij), j = 1, 2, ..., N}, (2.8)

as the solution space and the test space, where P k(Ij) denotes the set of polynomials of degree

≤ k on cell Ij . If we adopt a local orthogonal basis over Ij, say {v(j)
l (x), l = 0, 1, ..., k}, then
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the numerical solution uΔx(x, t) ∈ V k
Δx can be written as

uΔx(x, t) =

k∑
l=0

u
(l)
j (t)v

(j)
l (x) for x ∈ Ij (2.9)

with

u
(l)
j (t) =

1

al

∫
Ij

uΔx(x, t)v
(j)
l (x)dx, l = 0, 1, 2, ..., k, (2.10)

where al =
∫

Ij
(v

(j)
l (x))2dx are the normalization constants.

A semidiscrete DG method for solving (1.1) is obtained by multiplying (1.1) by a test

function v(x) ∈ V k
Δx, integrating over Ij , and integrating by parts. Specifically, the evolution

of the degrees of freedom u
(l)
j (t) in (2.9) by the DG method is achieved by

d

dt
u

(l)
j +

1

al

(
−
∫

Ij

f(uΔx(x, t))
d

dx
v

(j)
l (x)dx + f̂j+ 1

2
v

(j)
l (xj+ 1

2
) − f̂i− 1

2
v

(j)
l (xj− 1

2
)

)
= 0, (2.11)

l = 0, 1, ..., k.

Here, f̂j+ 1
2

is a monotone numerical flux defined by (2.2) with u−
j+ 1

2

and u+
j+ 1

2

being the left

and right limits of the discontinuous solution uΔx at the cell interface xj+ 1
2
.

The DG method is a linear method, hence it cannot capture discontinuities without

spurious oscillations when the order of accuracy is higher than one. Typically, nonlinear

limiters similar to those used in high resolution finite volume schemes are used to suppress

those oscillations. In this paper, we adopt the WENO limiter proposed in [12]. We refer to

[12] for the details of the implementation of this WENO limiter.

2.3 Total variation diminishing (TVD) Runge-Kutta time dis-

cretization

To evolve ūj(t) in (2.1) for the finite volume WENO scheme or u
(l)
j (t) in (2.11) for the DG

method in time, we use the third order total variation diminishing (TVD) Runge-Kutta

method in [14]. Explicitly, for the system of ODEs ut = L(u), the evolution from un to un+1
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is obtained through

u(1) = un + ΔtL(un, tn)

u(2) =
3

4
un +

1

4
(u(1) + ΔtL(u(1))) (2.12)

un+1 =
1

3
un +

2

3
(u(2) + ΔtL(u(2))).

The details of its implementation can be found in [14].

3 Examples of scalar nonconvex conservation laws

3.1 Examples with good performance of high order schemes

In this subsection, we will give two examples of nonconvex conservation laws for which the

high order numerical methods perform nicely and converge to the entropy solutions.

• The Buckley-Leverett Equation. This is a one-dimensional model problem for two-

phase fluid flow in a porous medium with the application in oil-reservoir simulation.

The conservation law is (1.1) with the flux function given by

f(u) =
u2

u2 + a(1 − u)2
where a =

1

2
, (3.1)

and the initial condition given by

u0(x) =

{
1, for x < 0,
0, for x ≥ 0.

(3.2)

Figure 3.1 shows the solution u(x, t) of the Buckley-Leverett equation (1.1)-(3.1) with

the initial condition (3.2) at the time t = 2. The exact solution is obtained by the

convex-hull construction [8]. We observe that both the finite volume WENO scheme

and the discontinuous Galerkin method with a WENO limiter approximate the exact

solution very well in this example. We have computed this example using the discon-

tinuous Galerkin method with a WENO limiter of orders of accuracy from 2 to 4 and

have obtained similarly good solutions, even though only the second order result is

plotted in Figure 3.1 to save space.
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Figure 3.1: Solid lines: the exact solution of (1.1)-(3.1) with the initial condition (3.2) at
the time t = 2; solid symbols: the numerical solution of the fifth order finite volume WENO
scheme (left) and the second order discontinuous Galerkin method with WENO limiters
(right). The uniform mesh size is Δx = 0.1.

• Another example. The following example is used in [7]. It is a Riemann problem for

the scalar one-dimensional nonconvex conservation laws (1.1) with the flux function

given by

f(u) =

⎧⎪⎨
⎪⎩

u(1 − u)

4
, if u <

1

2
,

1

2
u2 − 1

2
u +

3

16
, if u ≥ 1

2
,

(3.3)

and the initial condition given by

u0(x) =

{
0, for x < 0,
1, for x ≥ 0.

(3.4)

Figure 3.2 shows the solution u(x, t) for the Riemann problem of (1.1)-(3.3) with the

initial condition (3.4) at the time t = 2. The exact solution is obtained by the convex-

hull construction. Again, we have computed this example using the DG method with a

WENO limiter from second to fourth order accuracy and have obtained similarly good

solutions, even though only the second order result is shown in Figure 3.2. The high

order numerical methods are observed to approximate the exact solution very well for

this example.
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Figure 3.2: Solid lines: the exact solution of (1.1)-(3.3) with the initial condition (3.4) at
the time t = 2; solid symbols: the numerical solution of the fifth order finite volume WENO
scheme (left) and the second order discontinuous Galerkin method with WENO limiters
(right). The uniform mesh size is Δx = 0.1.

3.2 An example of nonconvex conservation laws with poor per-
formance of high order schemes

Despite the good performance of high order numerical methods in the examples demonstrated

above, there are also examples for which the performance of high order numerical methods

is poor. In this subsection, we will show a nonconvex conservation law, such that many high

order numerical schemes do not converge to the unique entropy solution. Indeed, we will

show in the following that the numerical solution of the second order finite volume MUSCL

scheme, the second order DG method, and the high order Godunov type scheme with fifth

order WENO reconstruction and the usual time step governed by the CFL condition, all

with the Godunov flux (2.3), would stay stationary on the initial data for a specific sequence

of meshes. On the other hand, the correct entropy solution for this case would develop a

sequence of shocks and rarefaction waves.

Proposition 3.1. Consider the semi-discrete finite volume scheme with the second order

MUSCL reconstruction (2.5) and the monotone Godunov flux (2.3), for solving (1.1) with
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Figure 3.3: Left: the nonconvex flux function f(u); Right: the exact solution of (1.1)-(3.5)
with the initial condition (3.6) at the time t = 2.

the nonconvex flux f(u) defined by

f(u) =

⎧⎪⎪⎨
⎪⎪⎩

1, if u < 1.6
cos(5π(y − 1.8)) + 2.0, if 1.6 ≤ u < 2.0
− cos(5π(y − 2.2)), if 2.0 ≤ u < 2.4
1, if u ≥ 2.4

(3.5)

(see the left panel of Figure 3.3) and the initial condition

u0(x) =

{
1, for x < 0
3, for x ≥ 0

(3.6)

The numerical solution stays stationary over the time evolution for a specific sequence of

meshes. Therefore, the second order finite volume MUSCL scheme does not converge to the

correct entropy solution in this case (the right panel of Figure 3.3).

Proof: In order to prove that the numerical solution stays stationary, it is sufficient to prove

that the right hand side of (2.1) equals 0 for any j.

We first divide the computational interval into N = (2m + 1) evenly spaced subintervals

such that the origin 0 is located in the center of the (m+1)-th cell, i.e. xm+1 = 0. With such

a specific sequence of meshes, and under the initial condition (3.6), the initial cell averages

are given by

ū0
j = 1, for j = 1, ..., m; ū0

m+1 = 2; ū0
j = 3, for j = m + 2, ..., N,
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and the corresponding reconstructed point values by the MUSCL procedure (2.5) at the cell

boundaries are

u±,0

j+ 1
2

= 1, for j = 0, ..., m − 1; u±,0

j+ 1
2

= 3, for j = m + 2, ..., N ;

u−,0

m+ 1
2

= 1, u+,0

m+ 1
2

= 1.5, u−,0

m+ 3
2

= 2.5, u+,0

m+ 3
2

= 3.

If we use the monotone Godunov flux (2.3) as the numerical flux, then f̂G
j+ 1

2

= 1 for all j,

even for the flux at xm+ 1
2

and xm+ 3
2

where

f̂G
m+ 1

2
= f̂G(u−

m+ 1
2

, u+
m+ 1

2

) = f̂G(1, 1.5) = max
u∈(1,1.5)

f(u) = 1,

f̂G
m+ 3

2
= f̂G(u−

m+ 3
2

, u+
m+ 1

2

) = f̂G(2.5, 3) = min
u∈(2.5,3)

f(u) = 1.

Therefore, the right hand side of (2.1) equals 0 for all j. This implies that the cell averages

ūj, hence the numerical solution of the finite volume MUSCL scheme, stays stationary as

(3.6) over time.

The correct entropy solution can be solved by the convex hull reconstruction. The entropy

solution at the time t = 2 is plotted in the right panel of Figure 3.3. The discontinuity at

the origin in the initial condition generates a shock, a rarefaction wave followed by another

shock over time. Clearly the numerical solution of the finite volume MUSCL scheme fails to

converge to the correct entropy solution in this case. Indeed, we can easily check that the

stationary numerical solution is one of the weak solutions, but not the entropy solution, as

it violates the entropy inequality for the convex entropies U(u) = |u − c| with c ∈ [2.0, 2.2].

This completes the proof.

Proposition 3.2. Consider the semi-discrete DG method (2.11) for (1.1) with the nonconvex

flux f(u) defined by (3.5) and the initial condition (3.6). The numerical solution of the second

order DG method with the Godunov flux (2.3) will stay stationary over time for a specific

sequence of meshes. Therefore, the DG method could not converge to the correct entropy

solution (the right panel of Figure 3.3).
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Proof: Let the sequence of meshes be the same as that in the proof of Proposition 3.1

and consider the second order DG method with the solution space and test space to be the

piecewise linear function V 1
Δx as in (2.8). If we adopt a local orthogonal basis over Ij as {1, ξj}

with ξj =
x−xj

Δxj
, the semi-discrete DG method is formulated as finding uΔx = u

(0)
j + u

(1)
j ξj on

Ij , such that

∂

∂t
u

(0)
j = − 1

Δxj

(
f̂j+ 1

2
− f̂j− 1

2

)
(3.7)

1

12

∂

∂t
u

(1)
j =

1

Δxj

(
1

Δxj

∫
Ij

f(uΔx)dx −
(

1

2
f̂j+ 1

2
+

1

2
f̂j− 1

2

))
(3.8)

Initially, from (3.6), we have

u
(0)
j =

⎧⎨
⎩

1, for j = 1, 2, ..., m
2, for j = m + 1
3, for j = m + 2, ..., N

(3.9)

u
(1)
j =

⎧⎨
⎩

0, for j = 1, 2, ..., m
3, for j = m + 1
0, for j = m + 2, ..., N

(3.10)

By (2.3), it could be easily checked that the Godunov flux

f̂G
j+ 1

2
= 1, ∀j, (3.11)

and

1

Δx

∫
Ij

f(uΔx)dx = 1, ∀j, (3.12)

even for the flux at the boundaries of the (m+1)-th cell. Therefore, for any j, the right hand

sides of both (3.7) and (3.8) vanish. In other words, both the mean value and the slope of the

numerical solution over each cell would stay stationary over time. Therefore, the numerical

solution of the semi-discrete DG method with the Godunov flux stays stationary with respect

to the initial condition (3.6) and could not converge to the correct entropy solution as shown

in the right panel of Figure 3.3. This completes the proof.

Proposition 3.3. Consider the high order Godunov type scheme (2.7) with the fifth order

WENO reconstruction (2.6), for solving (1.1) with the nonconvex flux function f(u) defined

14



by (3.5) and the initial condition (3.6). The numerical solution stays stationary when the

time step is small enough for a specific sequence of meshes. Numerical solution of this high

order Godunov type scheme therefore could not converge to the correct entropy solution (the

right panel of Figure 3.3).

Proof: The proof is similar to that in [18], and is thus omitted.

We have shown that the numerical solutions for (1.1)-(3.5) with the initial condition

(3.6) would stay stationary for many high order schemes including the second order finite

volume MUSCL scheme, the second order discontinuous Galerkin method and the fifth order

Godunov type WENO scheme with the Godunov flux, which is the least dissipative among

all monotone fluxes, for a specific sequence of meshes. The numerical solutions of these

schemes with more dissipative fluxes, e.g. the Lax-Friedrichs flux, or with different meshes,

however, may not necessarily be stationary. In the following, we compare the performance

of different schemes with different types of numerical fluxes and different meshes for solving

(1.1) with the flux f(u) given by (3.5). We have performed extensive numerical experiments,

but are presenting only a selected few to demonstrate the poor performance of the low order

monotone schemes (slow convergence) and high order schemes (slow or no convergence).

1. Monotone scheme with the Lax-Friedrichs flux (the left panel of Figure 3.4) and with

the Godunov flux (the right panel of Figure 3.4) for the initial data (3.6).

2. Monotone scheme with the Lax-Friedrichs flux (the left panel of Figure 3.5) and with

the Godunov flux (the right panel of Figure 3.5) for the initial condition

u0(x) =

{
3, for − 1 ≤ x < 0
1, for 0 ≤ x ≤ 1

(3.13)

and a periodic boundary condition.

3. Fifth order finite volume WENO scheme with the Lax-Friedrichs flux (the left panel

of Figure 3.6) and with the Godunov flux (the right panel of Figure 3.6) for the initial

data (3.6).
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4. Discontinuous Galerkin method with WENO limiters (DG-WENO), with the Lax-

Friedrichs flux (the left panels of Figure 3.7) and with the Godunov flux (the right

panels of Figure 3.7) for the initial data (3.6).
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Figure 3.4: The numerical solution of the monotone scheme with the Lax-Friedrichs flux
(left) and the Godunov flux (right) for the nonconvex scalar conservation law (1.1)-(3.5)
with the initial condition (3.6) at t = 2 using N = 50 (unfilled square) and N = 100 (filled
square) uniform cells.

From the demonstrated numerical results, we can make the following observations.

1. The first order monotone scheme with the Godunov flux has a much better performance

than the one with the Lax-Friedrichs flux (see Figure 3.4). However, with a periodic

boundary condition, after shocks and rarefaction waves interact with each other, the

convergence is very slow even for the first order Godunov scheme (see Figure 3.5).

2. The fifth order finite volume WENO scheme with the Godunov flux might not converge

to the correct entropy solution. The scheme with the Lax-Friedrichs flux seems to

converge to the entropy solution with a slow convergence rate (the left panel of Figure

3.6), which might be related to the fact that the reconstruction of the solution at the

rarefaction wave comes from neighboring cells and is not a good approximation when
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Figure 3.5: The numerical solution of the monotone scheme with the Lax-Friedrichs flux
(left) and the Godunov flux (right) for the nonconvex scalar conservation law (1.1)-(3.5)
with the initial condition (3.13) at t = 2 with a periodic boundary condition using N = 200
(unfilled square), N = 1000 (filled square) and N = 36000 (solid line) uniform cells.

the rarefaction wave is surrounded by two shocks at its early stage of development.

Further numerical experiments on (1.1)-(3.5) with the initial condition (3.13) indicate

that the finite volume WENO scheme with the Lax-Friedrichs flux could not converge

to the entropy solution.

3. The DG scheme with WENO limiters might not converge to the correct entropy solution

of (1.1). Different meshes, fluxes and solution spaces in the DG scheme will give

different numerical results. The numerical solutions seem to converge to the correct

entropy solution in some but not all cases.

3.3 Another nonconvex conservation law: f(u) = sin(u)

In section 3.2, we have shown a nonconvex conservation law, with which the numerical so-

lution of the high order schemes could not converge to the correct entropy solution. Indeed

this is not the only example. We will show in the following another example of poor perfor-

mance of high order numerical methods. Consider the Riemann problem of the nonconvex
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Figure 3.6: The numerical solution of the fifth order finite volume WENO scheme with the
Lax-Friedrichs flux (left) and the Godunov flux (right) for the nonconvex scalar conservation
law (1.1)-(3.5) with the initial condition (3.6) at t = 2 using N = 50 (unfilled square) and
N = 800 (filled square) uniform cells.

conservation law (1.1) with the flux function

f(u) = sin(u),

and the initial condition

u0(x) =

{
π/64, if x < 0,
255π/64, if x ≥ 0.

(3.14)

It is shown, in Figure 3.8 for the high order finite volume schemes and in Figure 3.9 for the

discontinuous Galerkin methods, that the numerical solution of these high order schemes

would not always converge to the entropy solution. One of the rarefaction waves in the

compound wave is sometimes missing in the solutions of these high order schemes.
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Figure 3.7: The numerical solution of the DG-WENO schemes at t = 2 for (1.1)-(3.5) with
the initial condition (3.6) and the Lax-Friedrichs flux (left) and the Godunov flux (right)
using N = 51 (unfilled square) and N = 101 (filled square) uniform cells. From top to
bottom are figures for the second, third and fourth order schemes respectively.

19



x

u

-4 -2 0 2 4

0

4

8

12

x

u

-4 -2 0 2 4

0

4

8

12

Figure 3.8: Solid lines: the exact solution of (1.1) with f(u) = sin(u) and the initial condition
(3.14) at the time t = 4; solid symbols: the numerical solution of the second order MUSCL
scheme (left), and the fifth order finite volume WENO scheme (right). The numerical flux
is the Godunov flux. The mesh is uniform with Δx = 0.05.

4 First order monotone modification

In this section, we propose a first order monotone modification for high order numerical

methods. The objective is to maintain high order accuracy in smooth regions and enforce

convergence to the entropy solution for general nonconvex conservation laws. The main-

tenance of high order accuracy is achieved by a carefully designed discontinuity indicator

[16].

4.1 Discontinuity indicator

In order to maintain the high order accuracy in smooth regions, we use the discontinuity

indicator designed in [16]. Specifically, the discontinuity indicator φj is defined as

φj =
βj

βj + γj
(4.1)

where

αj =| ūj−1 − ūj |2 +ε, ξj =| ūj+1 − ūj−1 |2 +ε, βj =
ξj

αj−1
+

ξj

αj+2
, γj =

(umax − umin)
2

αj
.

20



x

u

-4 -2 0 2 4

0

4

8

12

x
u

-4 -2 0 2 4

0

4

8

12

x

u

-4 -2 0 2 4

0

4

8

12

Figure 3.9: Solid lines: the exact solution of (1.1) with f(u) = sin(u) and the initial condition
(3.14) at the time t = 4; solid symbols: the discontinuous Galerkin method with WENO
limiters, of second order accuracy (left), third order accuracy (middle) and fourth order
accuracy (right). The numerical flux is the Godunov flux. The mesh is uniform with Δx =
0.05.

Here ūj refers to the cell average of the numerical solution on Ij in the finite volume scheme

and the discontinuous Galerkin method, ε is a small positive number taken as 10−6 in the

code, and umax and umin are the maximum and minimum values of ūj over all cells. The

discontinuity indicator φj has the property that

• 0 ≤ φj ≤ 1.

• φj is on the order of O(Δx2) in smooth regions.

• φj is close to O(1) near a strong discontinuity.

4.2 Modification on the fifth order finite volume WENO scheme

In this section, we propose a first order modification to the fifth order finite volume WENO

scheme. Recall from section 2.1 that the cell average ūj in the finite volume WENO scheme

is updated by

dūj

dt
= − 1

Δxj

(f̂j+ 1
2
− f̂j− 1

2
), (4.2)

in which the numerical flux f̂j+ 1
2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

), or more precisely, the reconstructed point

values u±
j+ 1

2

at the cell boundaries play an essential role. The modification proposed is based
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on modifying u±
j+ 1

2

at the cell boundaries. The scheme can be summarized as following, after

a suitable initialization to obtain ū0.

1. Perform the WENO reconstruction.

At each cell interface, say xj+ 1
2
, reconstruct the point values u±

j+ 1
2

using neighboring

cell averages ūn by the fifth order WENO reconstruction procedure described in section

2.1.

2. Identify the troubled cell boundary xj+ 1
2
.

Criterion I: A cell boundary xj+ 1
2

is good, if u±
j+ 1

2

, ūj and ūj+1 all fall into the same

linear, convex or concave region of the flux function f(u). Otherwise, it is defined to

be a troubled cell boundary.

When the flux function f(u) is nonconvex, one can divide its domain into several

subregions, across each of which f(u) is purely linear, convex or concave. For example,

for f(u) defined in (3.5), there are several linear regions, e.g. [−∞, 1.6], [2.4,∞], convex

regions, e.g. [1.6, 1.7], [1.9, 2.0], [2.1, 2.3], and concave regions, e.g. [1.7, 1.9], [2.0,

2.1], [2.3, 2.4]. Points are said to fall into the same region if all of them are contained

in the same subregion.

3. At troubled cell boundaries, modify the numerical flux f̂j+ 1
2

with a discontinuity indi-

cator.

Let f̂j+ 1
2

= f̂(um,−
j+ 1

2

, um,+

j+ 1
2

), where

um,−
j+ 1

2

= (1 − φ2
j)u

−
j+ 1

2

+ φ2
j ūj, um,+

j+ 1
2

= (1 − φ2
j)u

+
j+ 1

2

+ φ2
j ūj+1, (4.3)

with φj defined by (4.1), if xj+ 1
2

is a troubled cell boundary. Otherwise, at good cell

boundaries, um,±
j+ 1

2

= u±
j+ 1

2

.

4. Evolve the cell averages ūj by (4.2).
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Remark. When a troubled cell boundary is at a strong discontinuity, φj ∼ 1, hence um,−
j+ 1

2

∼
ūj and um,+

j+ 1
2

∼ ūj+1, indicating a first order monotone scheme is taking the effect at a

nonconvex discontinuity region. When a troubled cell boundary is in a smooth region, the

modification is obtained with the magnitude at most of the size

φ2
j max

(∣∣∣uj − u−
j+ 1

2

∣∣∣ , ∣∣∣uj+1 − u+
j+ 1

2

∣∣∣) ∼ O(Δx5),

hence it does not affect the fifth order accuracy of the scheme.

Numerical examples are given below to check the maintained order of accuracy for smooth

solutions and convergence towards the entropy solution.

Example 4.1. The nonconvex conservation law

ut +

(
u3

3

)
x

= 0, u0(x) = sin(πx). (4.4)

Table 4.1 gives the L1 errors and the corresponding orders of accuracy of the regular and

modified finite volume WENO scheme. The L1 errors of both schemes are comparable. Very

little difference is observed.

Table 4.1: The L1 errors and the corresponding orders of accuracy for the regular and
modified finite volume WENO schemes with the Godunov flux for (4.4) at the time t = 0.2.

No. of regular modified
points L1 error order L1 error order
100 2.128E-05 2.128E-05
200 1.120E-06 4.25 1.120E-06 4.25
300 1.648E-07 4.73 1.648E-07 4.73
400 4.079E-08 4.85 4.079E-08 4.85
500 1.366E-08 4.90 1.366E-08 4.90

Example 4.2. The nonconvex conservation law (1.1) with f(u) = sin(u) and the initial

condition (3.14). The solutions at the time t = 4 are plotted in the left panel of Figure

4.1. As shown, the numerical solutions of the modified scheme successfully converge to the

correct entropy solution, with the development of the complex solution structure containing

a shock, a rarefaction wave, followed by another shock and another rarefaction wave.
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Figure 4.1: Left figure: Example 4.2. Solid lines: the exact solution at time t = 4; solid
symbols: the numerical solution of the modified fifth order finite volume WENO scheme with
the uniform mesh size Δx = 0.1 (unfilled squares), Δx = 0.05 (solid symbols). Right figure:
Example 4.3. Solid lines: the reference solution (computed by the first order monotone
Godunov scheme with N = 36000 points) at time t = 2; symbols: the numerical solution
of the modified fifth order finite volume WENO scheme with N = 200 (unfilled square) and
N = 1000 (filled square) uniform cells. The numerical flux in both figures is the Godunov
flux.

Example 4.3. The nonconvex conservation law (1.1) with f(u) given by (3.5), the

initial condition (3.13) and a periodic boundary condition. As shown in the right panel of

Figure 4.1, the numerical solution of the modified scheme converges to the correct entropy

solution, with much faster convergence rate when compared to the first order monotone

scheme (Figure 3.5). We also test our modified scheme by further refining the numerical

meshes. Convergence to the entropy solution is observed.

4.3 Modification on the discontinuous Galerkin methods

In this subsection, we propose a first order modification to the high order discontinuous

Galerkin methods. Recalling from section 2.2, the piecewise polynomial over each cell Ij is

updated by its moments u
(l)
j (t) as defined in (2.10) through (2.11). To modify high order

DG methods, we make the following two observations:

1. Only the numerical flux f̂j+ 1
2
, or more precisely, the left and right limits of discontinuous
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solution u−
j+ 1

2

and u+
j+ 1

2

at the cell interface are involved in updating the cell average

u
(0)
j .

2. The whole polynomial over Ij is involved in updating the higher order moments u
(l)
j

for l ≥ 1 through the integration term on the right hand side of (2.11).

Based on these two observations, a monotone modification for (k + 1)-th (k ≥ 1) order

DG methods with WENO limiters is designed as follows. After a suitable initialization,

u
(l)
j =

1

al

∫
Ij

u(x, 0)v
(j)
l (x)dx, l = 0, 1, 2, ..., k.

1. Apply the WENO limiters in the oscillatory troubled cells.

The oscillatory troubled cells refer to those cells where oscillations at discontinuities

might occur in high order DG methods. We refer to [12] for the details of identifying

such oscillatory troubled cells and reconstructing high order polynomials there by the

WENO procedure.

2. Identify the nonconvex troubled cells.

Criterion II: A cell Ij is called a good cell, if the numerical solution uΔx in the cells

Ij−1, Ij and Ij+1 falls into the same linear, convex or concave region of the flux function

f(u). Otherwise, it is defined to be a nonconvex troubled cell.

3. Evolve the polynomial solution.

• If a cell Ij is good, then evolve the polynomial function uΔx|Ij
by the regular DG

method through (2.11).

• Otherwise, evolve the cell average u
(0)
j only by

du
(0)
j

dt
= − 1

Δxj
(f̂j+ 1

2
− f̂j− 1

2
), (4.5)

where the numerical flux f̂j+ 1
2

= f̂(um,−
j+ 1

2

, um,+

j+ 1
2

) with

um,−
j+ 1

2

= (1 − φ2
j)u

−
j+ 1

2

+ φ2
ju

(0)
j , um,+

j+ 1
2

= (1 − φ2
j)u

+
j+ 1

2

+ φ2
ju

(0)
j+1,
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with φj defined by (4.1) at the troubled cell boundaries as defined via Criteria I

in section 4.2, and um,±
j+ 1

2

= u±
j+ 1

2

at good cell boundaries.

4. Reconstruct the polynomials in the troubled cells.

For a troubled cell Ij , where only the cell average is updated, the polynomial is recon-

structed from neighboring cell averages in a WENO fashion, as in [12].

Example 4.4. The nonconvex conservation law (4.4). Tables 4.2 and 4.3 give the L1

errors and the corresponding orders of accuracy of the regular DG-WENO methods and the

modified DG-WENO methods respectively. The tables show comparable L1 errors.

Table 4.2: The L1 errors and the corresponding orders of accuracy for the regular DG-WENO
method with the Godunov flux for (4.4) at the time t = 0.2.

No. of k = 1 k = 2 k = 3
points L1 error order L1 error order L1 error order

30 5.207E-03 7.655E-04 3.679E-04
60 1.230E-03 2.08 4.889E-05 3.97 5.403E-06 6.09
90 5.365E-04 2.05 1.265E-05 3.33 6.844E-07 5.10
120 2.862E-04 2.18 5.122E-06 3.14 2.045E-07 4.20
150 1.648E-04 2.47 2.608E-06 3.02 8.341E-08 4.02

Table 4.3: The L1 errors and the corresponding orders of accuracy for the modified DG-
WENO method with the Godunov flux for (4.4) at the time t = 0.2.

No. of k = 1 k = 2 k = 3
points L1 error order L1 error order L1 error order

30 2.313E-03 1.146E-03 6.951E-04
60 1.242E-03 4.40 4.924E-05 4.54 5.714E-06 6.93
90 5.382E-04 2.06 1.264E-05 3.35 7.044E-07 5.16
120 2.866E-04 2.19 5.120E-06 3.14 2.048E-07 4.29
150 1.649E-04 2.48 2.608E-06 3.02 8.291E-08 4.05

Example 4.5. The nonconvex conservation law (1.1) with f(u) = sin(u) and the initial

condition (3.14). Its solution at the time t = 4 of the second and fourth order DG-WENO
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methods are plotted in Figure 4.2. As shown, the numerical solutions of the modified schemes

successfully converge to the correct entropy solution.
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Figure 4.2: Solid lines: the exact solution of (1.1) with (3.14) at the time t = 4; solid
symbols: the modified discontinuous Galerkin method with WENO limiters, of second order
accuracy (left) and fourth order accuracy (right). The numerical flux is the Godunov flux.
The uniform mesh sizes are Δx = 0.1 (unfilled squares) and Δx = 0.05 (solid symbols),
respectively.

Example 4.6. The nonconvex conservation law (1.1) with f(u) defined in (3.5), the

initial condition (3.13) and a periodic boundary condition. As shown in Figure 4.3, the

numerical solutions of the modified schemes converge to the correct entropy solution with

much faster convergence rate when compared with the first order monotone scheme. We

also test our modified scheme by further refining the numerical mesh. Convergence to the

entropy solution is observed.

5 Second order modification with an entropic projec-

tion

A MUSCL type method with an entropic projection, enjoying the cell entropy inequality

for all convex entropy functions, is proposed in [1]. This entropy satisfying property for all

convex entropy functions is very attractive in the design of high order numerical methods
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Figure 4.3: Solid lines: the reference solution obtained by the first order monotone Godunov
scheme with N = 36000 grid points for (1.1) with (3.5), the initial condition (3.13) and
a periodic boundary condition at the time t = 2. Symbols: the modified discontinuous
Galerkin method with WENO limiters, of second order accuracy (left), third order accuracy
(middle) and fourth order accuracy (right) with N = 200 (unfilled squares) and N = 1000
(solid squares) uniform cells. The numerical flux is the Godunov flux.

for general nonconvex conservation laws. Based on the idea of this entropic projection, we

propose a second order modification for the high order schemes.

5.1 Review of the MUSCL method satisfying all the numerical
entropy inequalities

The scheme in [1] uses piecewise linear functions as the solution space. Specifically, the

numerical solution at time level n can be written as un = ūn
j + sn

j ξj with ξj =
x−xj

Δxj
over the

cell Ij . It consists of two steps to evolve from un to un+1.

1. Exact evolution (TΔt): Evolve (1.1) exactly for a time step Δt, to obtain a solution

ũn+1, which in general is not a piecewise linear function anymore.

2. An entropic projection (P 1): Find a second order approximation to ũn+1 by a piecewise

linear function un+1, satisfying

∫
Ij

U(un+1(x))dx ≤
∫

Ij

U(ũn+1(x))dx, ∀j (5.1)
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for all convex entropy functions U(u). Second order reconstruction satisfying (5.1) can

be obtained by setting the cell average as

ūn+1
j =

1

Δxj

∫
Ij

ũn+1 (5.2)

and the slope as

sn+1
j = Dũn+1 |Ij

= minmodIj
ζ(y) (5.3)

where

ζ(y) =
2

Δxj

⎛
⎝ 1

xj+ 1
2
− y

∫ x
j+ 1

2

y

ũn+1(x)dx − 1

y − xj− 1
2

∫ y

x
j− 1

2

ũn+1(x)dx

⎞
⎠ . (5.4)

The minmod function of g(x) on the interval (a, b) is defined as

minmod(a,b)g(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if ∃y1, y2 ∈ (a, b), s.t. g(y1)g(y2) ≤ 0,
min
(a,b)

g(y), if g(y) > 0, ∀y ∈ (a, b),

max
(a,b)

g(y), if g(y) < 0, ∀y ∈ (a, b).
(5.5)

In summary, the scheme can be written out in the following abstract form

un+1 = P 1 ◦ TΔt(u
n)

.
= Q1(Δt)(un). (5.6)

It enjoys the following convergence theorem as proved in [1]. Comparing with the high

order Godunov type schemes (2.7) which may fail to satisfy at least some entropy conditions

[18], the entropic projection (P 1), especially, the reconstruction of the slope sn+1
j in (5.3), is

crucial to ensure convergence towards the entropy solution.

Theorem 5.1 [1]. Let T = nΔt, u(·, T ) be the exact entropy solution to (1.1) with the

initial data u0 ∈ L1 ∩BV (R), f∞ = maxu∈[minu0,max u0] f
′(u), then there exists a constant C,

such that

‖Q1(Δt)nu0 − u(·, T )‖L1 ≤ C(f∞
√

TΔt + Δx
√

T/Δt). (5.7)

Therefore, the second order MUSCL scheme with the entropic projection (5.6) converges to

the unique entropy solution.
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5.2 Second order schemes with the entropic projection

In this subsection, the entropic projection (P 1), or more explicitly, the reconstruction of

the slope sn+1
j in (5.3), is used to design a second order method for general nonconvex

conservation laws. With a suitable initialization to obtain a piecewise linear function, ū0
j +

s0
jξj with ξj =

x−xj

Δxj
, the scheme consists of the following steps in each time step evolution.

1. Identify nonconvex troubled cells, for which we refer to Criterion II in section 4.3 for

the details.

2. Update ūn+1
j for the good cells.

If a cell Ij is good, evolve ūn
j by the regular finite volume method through (4.2),

where f̂j+ 1
2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

) with u−
j+ 1

2

and u+
j+ 1

2

being the left and right limits of the

numerical solution at the cell interface.

3. Update ūn+1
j and sn+1

j in nonconvex troubled cells.

If a cell Ij is a nonconvex troubled cell, update un+1|Ij
by (5.2) and (5.3), where

ũn+1|Ij
is approximated by a first order refined mesh evolution. Specifically, a first

order monotone scheme is used to numerically evolve (1.1) with the initial condition

ūn
l + sn

l ξl, for x ∈ Il, l=j-1, j, j+1 (5.8)

and a periodic boundary condition on Ij−1 ∪ Ij ∪ Ij+1 for time Δt. We remark that

periodic boundary condition is allowed here as the information outside the domain,

Ij−1 ∪ Ij ∪ Ij+1, would not affect the solution on Ij after time Δt, which is restricted

by the CFL condition. Let Ij be uniformly discretized by

Ij = ∪N
m=1[ym− 1

2
, ym+ 1

2
], δx = ym+ 1

2
− ym− 1

2
= Δx/N,

then ũn+1|Ij
is approximated by a piecewise constant function sitting on the refined

numerical mesh with the truncation error ∼ O(δx) = O(Δx2). (5.3) is numerically
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implemented by finding y among the (finitely many) refined cell boundaries ym+ 1
2

(m = 0, ..., N) that minimizes ζ(y) as defined in (5.4).

4. Update sn+1
j in the good cells.

In the good cells, reconstruct the slope sn+1
j in the MUSCL fashion from neighboring

cell averages.

Remark. The implementation of the entropic projection proposed above is very compu-

tational expensive and impractical. An efficient implementation for specific equations, for

example for the Burgers equation with the flux function f(u) = u2

2
is available in [1]. For

general nonconvex flux functions, an efficient implementation for the entropic projection is

nontrivial and is worth a further investigation.

In the following, we provide numerical examples of the proposed second order scheme

with the entropic projection.

Example 5.1. The nonconvex conservation law (4.4). Table 5.1 gives the L1 errors and

the corresponding orders of accuracy for the regular second order finite volume scheme with

the MUSCL reconstruction and the proposed scheme with the entropic projection. The table

shows comparable L1 errors and second order accuracy as expected.

Table 5.1: The L1 errors and the corresponding orders of accuracy for the regular second
order finite volume scheme with the MUSCL reconstruction and the proposed scheme with
the entropic projection for (4.4) at the time t = 0.2.

No. of MUSCL entropic projection
points L1 error order L1 error order

60 3.198E-03 3.202E-03
120 8.863E-04 1.85 8.865E-04 1.85
180 4.129E-04 1.88 4.129E-04 1.88
240 2.394E-04 1.90 2.394E-04 1.90
300 1.548E-04 1.95 1.548E-04 1.95
360 1.095E-04 1.90 1.095E-04 1.90
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Example 5.2. The nonconvex conservation laws (1.1) with f(u) = sin(u) and the initial

condition (3.14). The solutions at the time t = 4 are plotted in the left panel of Figure 5.1.

As shown, the numerical solution of the scheme with the entropic projection successfully

converges to the correct entropy solution, with better resolution of the rarefaction wave

when compared with the regular MUSCL reconstruction (the left panel of Figure 3.8).
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Figure 5.1: Left figure: the solid line is the exact solution of (1.1) with (3.14) at the time
t = 4, while the solid symbols are the numerical solution of the second order finite volume
scheme with the entropic projection with Δx = 0.1 (unfilled squares), Δx = 0.05 (solid
symbols). Right figure: the solid line is the reference solution (obtained with a first order
monotone Godunov scheme with N = 36000 grid points) at the time t = 2, while the
symbols are the numerical solution of the second order scheme with the entropic projection
with N = 200 (unfilled squares) and N = 1000 (solid symbols) uniform cells. The numerical
flux in both figures is the Godunov flux.

Example 5.3. The nonconvex conservation law (1.1) with f(u) defined by (3.5), the

initial condition (3.13) and a periodic boundary condition. As shown in the right panel of

Figure 5.1, the numerical solution of the second order scheme with the entropic projection

converges to the correct entropy solution, with much faster convergence rate when compared

with the first order monotone scheme (Figure 3.5).
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5.3 Second order modification to the fifth order finite volume
WENO schemes

In this subsection, the second order method just designed is used as a building block to

modify the fifth order finite volume WENO scheme. The modification follows a similar line

as the first order monotone modification described in section 4.2. The procedure is outlined

as following.

At each time step evolution, we would like to update uj = {ūj, u
±
j∓ 1

2

, ul
j, u

r
j} over the cell

Ij . At the initial stage, u±
j∓ 1

2

is obtained by the WENO reconstruction from ū. ul
j and ur

j

refer to approximations to the left and right boundaries of Ij. ul
j = u+

j− 1
2

and ur
j = u−

j+ 1
2

.

1. Identify the troubled cell boundaries, for which we refer to Criterion I in section 4.2

for the details.

2. Modify the numerical flux f̂j+ 1
2

with a discontinuity indicator.

Specifically, let f̂j+ 1
2

= f̂(um,−
j+ 1

2

, um,+

j+ 1
2

), where

um,−
j+ 1

2

= (1 − φ2
j )u

−
j+ 1

2

+ φ2
ju

r
j , um,+

j+ 1
2

= (1 − φ2
j )u

+
j+ 1

2

+ φ2
ju

l
j+1, (5.9)

with φj defined by (4.1) at the troubled cell boundary. At good cell boundaries,

um,±
j+ 1

2

= u±
j+ 1

2

.

3. Identify nonconvex troubled cells.

Criterion II ′: A cell Ij is called a good cell, if um = {ūm, u±
m∓ 1

2

ul
m, ur

m} with m =

j − 1, j, j + 1, fall into the same linear, convex or concave region of the flux function

f(u). Otherwise, it is defined to be a nonconvex troubled cell.

4. Update ul
j and ur

j for a nonconvex troubled cell Ij.

Perform a first order refined mesh evolution. Specifically, the first order monotone

scheme is used to numerically evolve (1.1) with the initial condition (5.8) where

sn
m = 2minmod(ur

m − ūm, ūm − ul
m), m = j − 1, j, j + 1
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and a periodic boundary condition to obtain ũn+1|Ij
, the details of this step is given in

section 5.2. ũn+1 is then approximated by ũn+1
j + sn+1

j ξj with ũn+1
j obtained from (5.2)

and sn+1
j from (5.3).

ul,n+1
j = ũn+1

j − 1

2
sn+1

j , ur,n+1
j = ũn+1

j +
1

2
sn+1

j .

5. Update the cell averages ūn+1 by (4.2).

6. Update u±
j∓ 1

2

by the WENO reconstruction procedure.

7. For a good cell Ij, update ul
j and ur

j by setting ul
j = u+

j− 1
2

and ur
j = u−

j+ 1
2

.

Remark. Comparing with the monotone modification of high order schemes, there are two

additional pieces of information in each time step evolution, namely ul
j and ur

j . They are

second order approximations to the left and right boundaries of a troubled cell Ij and are

used in (5.9) to modify the numerical flux.

In the following, we provide numerical examples of the modified fifth order finite volume

scheme with the second order entropic projection.

Example 5.4. The nonconvex conservation law (4.4). Table 5.2 shows comparable L1

errors and the corresponding orders of accuracy for the regular fifth order finite volume

scheme and the modified one with the second order entropic projection.

Table 5.2: The L1 errors and the corresponding orders of accuracy for the regular fifth order
finite volume WENO scheme and the modified one with the second order entropic projection
for (4.4) at the time t = 0.2. The numerical flux is the Godunov flux.

No. of regular modified
points L1 error order L1 error order
100 2.128E-05 2.128E-05
200 1.120E-06 4.25 1.120E-06 4.25
300 1.648E-07 4.73 1.648E-07 4.73
400 4.079E-08 4.85 4.079E-08 4.85
500 1.366E-08 4.90 1.366E-08 4.90
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Example 5.5. The nonconvex conservation law (1.1) with f(u) = sin(u) and the initial

condition (3.14). The solutions at time t = 4 are plotted in the left panel of Figure 5.2.

As shown, the numerical solution of the modified fifth order finite volume scheme with the

entropic projection successfully converges to the correct entropy solution.

x

u

-4 -2 0 2 4

0

10

20

x

u

-1.5 -1 -0.5 0 0.5 1 1.5

1.99

2

2.01

Figure 5.2: Left: Example 5.5. The solid line is the exact solution of (1.1) with (3.14) at the
time t = 4, while the solid symbols are the numerical solution of the modified fifth order finite
volume scheme with the entropic projection. The mesh size Δx = 0.1 (unfilled squares) and
Δx = 0.05 (solid symbols). Right: Example 5.6. Solid lines: the reference solution obtained
from the first order monotone Godunov scheme with N = 36000 grid points at the time
t = 2; symbols: the numerical solution of the modified fifth order finite volume WENO
scheme with the entropic projection with N = 200 (unfilled square) and N = 400 (filled
square) uniform cells. The numerical flux in both figures is the Godunov flux.

Example 5.6. The nonconvex conservation law (1.1) with f(u) defined by (3.5), the

initial condition (3.13) and a periodic boundary condition. As shown in the right panel of

Figure 5.2, the numerical solution of the fifth order finite volume WENO scheme with the

second order entropic projection approximates the correct entropy solution very well with

relatively coarse meshes, when compared with the first order modified high order schemes

(the right panel of Figure 4.1).
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5.4 Second order modification to the high order discontinuous
Galerkin methods

In this subsection, the second order entropic projection is used as a building block to modify

high order discontinuous Galerkin methods. The modification follows a similar line as the

first order monotone modification presented in section 4.3. The procedure for a (k + 1)-th

order discontinuous Galerkin method is outlined as following.

At each time step evolution, we would like to update uj = {u(0)
j , ..., u

(k)
j , ul

j, u
r
j} over the

cell Ij. At the initial stage, u
(l)
j is obtained by (2.10) and ul

j and ur
j refer to the point values

at the left and right boundaries of the cell Ij. The scheme consists of the following steps in

each time step evolution.

1. Apply the WENO limiters in the oscillatory troubled cells as described in section 4.3.

2. Identify nonconvex troubled cells Ij as described in Criterion II in section 4.3.

3. Identify nonconvex troubled cell boundaries as described in Criterion I in section 4.2.

4. Modify the numerical flux f̂j+ 1
2

with the discontinuity indicator.

Specifically, let f̂j+ 1
2

= f̂(um,−
j+ 1

2

, um,+

j+ 1
2

), where um,±
j+ 1

2

is computed from (5.9) at a troubled

cell boundary. At good cell boundaries, um,±
j+ 1

2

= u±
j+ 1

2

.

5. For good cells, update u
(l)
j (l = 0, ..., k) by the regular discontinuous Galerkin method

and compute ul
j and ur

j from u
(l)
j (l = 0, ..., k).

6. For nonconvex troubled cells, update u
(0)
j by (4.5) and update the remaining moments

u
(l)
j with l ≥ 1 in a WENO fashion as in [12].

7. For nonconvex troubled cells Ij, update ul
j and ur

j as described in section 5.3.

In the following, we provide numerical examples of the modified high order discontinuous

Galerkin methods with the second order entropic projection.
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Example 5.7. The nonconvex conservation law (4.4). Table 5.3 gives the L1 errors and

the corresponding orders of accuracy for the modified DG-WENO scheme with the entropic

projection. The L1 errors of the modified DG-WENO method are comparable to those of

the regular DG-WENO method shown in Table 4.2.

Table 5.3: The L1 errors and the corresponding orders of accuracy for the modified DG-
WENO method with the entropic projection at the time t = 0.2. The numerical flux is the
Godunov flux.

No. of k = 1 k = 2 k = 3
points L1 error order L1 error order L1 error order

30 5.313E-03 1.146E-04 6.951E-04
60 1.244E-03 2.09 4.924E-05 4.54 5.714E-06 6.93
90 5.382E-04 2.06 1.264E-05 3.35 7.044E-07 5.16
120 2.866E-04 2.19 5.120E-06 3.14 2.048E-07 4.29
150 1.649E-04 2.47 2.608E-06 3.02 8.291E-08 4.05

Example 5.8. The nonconvex conservation law (1.1) with f(u) = sin(u) and the initial

condition (3.14). The solutions at the time t = 4 are plotted in Figure 5.3. As shown,

the numerical solution of the modified high order discontinuous Galerkin method with the

entropic projection successfully converges to the correct entropy solution.

Example 5.9. The nonconvex conservation law (1.1) with f(u) defined by (3.5), the

initial condition (3.13) and a periodic boundary condition. As shown in Figure 5.4, the high

order discontinuous Galerkin method with the second order entropic projection approximates

the correct entropy solution very well with relatively coarse meshes. When comparing with

the first order modified high order discontinuous Galerkin method (see Figure 4.3), the

performance of the scheme has been greatly improved.

6 Concluding Remarks

We have investigated the performance of high order numerical methods for general one di-

mensional scalar nonconvex conservation laws, emphasizing convergence to the discontinuous
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Figure 5.3: The solid line is the exact solution of (1.1) with (3.14) at the time t = 4, while
the solid symbols are the numerical solution of the modified second order (left) and fourth
order (right) discontinuous Galerkin method with the entropic projection. The uniform mesh
sizes are Δx = 0.1 (unfilled squares) and Δx = 0.05 (solid symbols), respectively.

entropy solutions. It is observed that high order finite volume WENO and discontinuous

Galerkin schemes may fail to converge to the entropy solutions for some difficult test cases.

A first order modification based on first order monotone schemes and a second order modifi-

cation based on an entropic projection are designed for high order finite volume WENO and

discontinuous Galerkin methods to maintain high order accuracy in smooth regions and to

enforce convergence to the entropy solution. Numerical examples are shown to demonstrate

the quality of the proposed schemes. Future work will include more efficient implementa-

tion of the second order entropic projection, and a generalization of the current approach to

multi-dimensional scalar problems and to systems.
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